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ABSTRACT

A new approach is proposed for analyzing the compressible

turbulent boundary with arbitrary pressure gradient. The new

theory generalizes an incompressible study by the first author

to account for variations in wall temperature and freestream Mach

number and temperature. By properly handling the law-of-the-wall

in the integration of momentum and continuity across the boundary

layer, one may obtain a single ordinary differential equation for

skin friction devoid of integral thicknesses and shape factors.

The new differential equation is analyzed for various cases.

For flat plate flow, a new relation is derived which is the most

accurate of all known theories for adiabatic flow and reasonably

good (fourth place) for flow with heat transfer. For flow with

strong adverse and favorable pressure gradients, the new theory

is in excellent agreement with experiment, possibly the most

accurate of any known theory, although the data are too sparse

to draw this conclusion. The new theory also contains an explicit

criterion for boundary layer flow separation. Also, it appears

to be the simplest by far of any compressible boundary layer

analystis, even yielding to hand ifputation if desired.
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I. INTRODUCTION

It is the purpose of this report to develop and illustrate a new

type of approximate method for calculating the skin friction distribu-

tion in a compressible turbulent boundary layer under arbitrary heat

transfer and pressure gradient conditions. This method is an extension

of an incompressible flow analysis reported by White (74)*

One must review the present status of compressible turbulent

boundary layer calculation in order to justify the need for a new

me1-hod. A great many workers are active in the field of boundary

layer prediction. For incompressible turbulent flow, over sixty

differont methods exist, and the relative merits of some twenty-

eight of these were thrashed out thoroughly in the recent Stanford

Conference edited by Kline et al (38). Attention has now turned to

the compressible turbulent boundary layer, and a review last year by

Beckwith (4) of the new methods in this field contains one hundred

references. Also, in 1968, an entire symposium, edited by Bertram (5),

was devoted to the compressibl- turbulent boundary layer.

Following Beckwith (4), we may divide the comoressible flow

methods into three types:

1. winite difference (FD) methods which attack the full boundary

layer equations by dividing the flow field into a two-dimensional

mesh.

2. Integral (IM) methods which utilize the compressible form of

JH
Numbers in parentheses denote references, which are grouped alphabetically

at te end of this report.



I
the so-called Karman integral relations - cf. Schlichting (62),

Eqs. (13.80) and (13.87) - plus suitable auxiliary information

about the behavior of the various integral thicknesses and

shape factors.

3. Correlation techniques (CT) which relate skin friction and

Stanton number to local flow parameters through empirical

algebraic expressions, mostly derived from flat plate data

but often employed in more general problems.

To these we may add a fourth type of method to which, presumably, the

present report belongs:

4. Methods which utilize a markedly different point of view

without sacrificing either physical realism or computational

accuracy.

All of these methods of course suffer from the fact that the turbulence

terms are not well defined and certainly not known exactly in any situ-

ation, particularly for compressible flow. Thus all computations of

the turbulent boundary layer are approximate and semi-empirical, even

if the most sophisticated finite difference techniques are used. This

is not to downgrade the FD methods, which are time consuming but

sufficiently comprehensive to allow one to make "numerical experiments"

into the nature of the turbulence approximations.

To resolve the turbulence terms and achieve closure of the basic

equations, various approaches can be taken for compressible flow:

1. Eddy viscosity, eddy conductivity, and turbulent energy

correlations - primarily used in the FD methods.
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2. Empirical correlations between skin friction, Stanton number,

integral thicknesses, and shape factors - primarily for IM

methods.

3. Compressibility transformations which relate the compressible

flow to a supposedly "equivalent" incompressible flow - useful

in all three types of methods (FD, IM, and CT).

4. The law-of-the-wall or the-wall-of-the-wake. These two laws

are well accepted physically and useful in all methods, in-

cluding the present report, which utilizes the law-of-the-wall

as a sort of "equation of state" of turbulence. Kline (38)

has stated that no method which ignores the law-of-the-wall can

be successful.

We may list by type the following boundary layer methods which have

been applied successfully to compressible flow, at least for adiabatic

walls:

1. FD methods: Herring and Mellor (30), Cebeci, Smith and Mosin-

skis (14), Patankar and Spalding (58), Fish and McDonald (26),

Bushnell and Beckwith (11), Bradshaw and Ferriss (6), Cebeci (13).

Computer listings are available to the general reAer frn geyrinj

and Mellor and from Patankar and Spalding.

2. IM methods: Reshotko and Tucker (59), Camarata and McDonald (12).

Alber and Coats (2), Henry et al (29), Nielsen and Kuhn (55),

Shang (63), Sasman and Crescl (61), Winter, Smith and Rotta (77),

A complete FORTRAN program for the method of Sasman and Cresci

3



is given by McNally (47).

3. CT methods: Van Driest (71), Spalding and Chi (66), Sommer

and Short (65), Eckert (24), Moore (52), Coles (18), Komar

(39), Wilson (75), and Tetervin (70).

As mentioned, many of these methods u-e the compressibility trans-

formations which relate the equations to an incompressible flow. Such

transformations have a long history in laminar flow, but in turbulent

flow they were apparently first suggested by Van Le (73). Subsequently,

the idea was developed by Mager (44), Baronti and Libby (3), Laufer

(4), Lewis, Kubota and Webb (43), and culminating with an extensive

recent discussion by Economos (25). While the compressiility trans-

formations are indeed accurate for flat plate conditions at moderate

Mach numbers and heat transfer rates (and the present report leads

coincidentally to just such a transformation), they are based upon

a kinematic invariance between compressible and incompressible tur-

bulence. Thus the transformations probably fail at conditions of

strong pressure gradient, high Mach number, or large heat transfer.

The present method chooses not to rely upon such a transfomation

except for flat plate conditions where the idea arIsc: iVlicitly.

The present method is intended to cospete with (or even replace)

the other integral methods now in use. Let us therefore discuss these

other methods. To the authors' knowledge, all integral schemes now

in use for the compressible turbulent boundary layer have their roots

in the Karmen integral relation. This relation arises by interating

the two-dimensional compressible mmentum equation with respect to y

4



across the entire boundary layer. One form of the result is as follows:

dO dU Udo 1 Cfde + 'n !.ax 2 +, H,2 '+, af +  -pT- o[e - ""dy
dx Ued l eda 2

where subscript "e" denotes freestream conditions. The momentum thick-

ness Q and displacement thickness 6* have their compressible forms:

6"o,.,,+ U U) 6'( _.+ , e- U
6 f U dy , o; (1 - dy (2)

e e 0 Pe

and the shape factor H0 0 8*/8. Equation (1) is a rather general fom

of the Karman integral relation, as discussed by H. McDonald in Bertram

(5). If, for ex#aple, the freestrean is adiabatic - which in the

usual case - the term involving the freestrem density variation may

be rewritten as:

Udo e P 2

Mee (3)

Also, the third term on the left, Involving the pressure variation

across the boundary layer, is neglected In mst Integral analyses.

For inoapres sib l flo , it I certainly t that p tPe to good

approximatin, and this torm vanishes. Rssver, for oompressible flow,

S



particularly with large streanvise pressure gradients, this term may

be quite significant. Michel (49 found in an experiment at M = 2.0
e

that the wall pressure could be as much as 25% higher than pe and

that Eqn. (1) could not be balanced to within 30% of the measured

momentum thickness without the inclusion of the pressure variation

term. Similar results are reported by Hoydysh and Zakkay (35) It

appears that integral methods which neglect this effect have simply

delayed the moment of truth by masking the error in a pseudo-corre-

lation between 0, H12 , and Cf which temporarily accounts for the

discrepancy. McDonald goes on to state that no Karman integral

method should neglect the pressure variation term, and Myring and

Young ( 54 have indicated a "Mach wave" approximation for calculating

this term.

The Karan integral relation, then, hardly stands on its own as

an analytical tool for the copressible turbulent boundary layer. It

is one equation in four unknowns: 1) Gi 2) H2s 3) Cfg and 4) the

pressure variation term. Therefore it must be liberally suppliennted

by other empirical and analytical relations. The new relations often

bring in new variables and, before closure is finally achieved, the

final package of equations can be quite imposing. For example, the

recent integral mthod of Alber and Coates (2) which is one of the

most accurate to date., uses the following relations

1. Te Karsuan integral relation - Uqa. (1).

2, The man energy integral relation.

6



3. The law-of-the-wall.

4. The law-of-the-wake.

5. The generalized velocity variable suggested by van Driest (71).

6. A correlation for the equilibrium dissipation integral.

7. An empirical expression relating wake function to local pressure

gradient.

8. A modified Crocco relation for density variation across the

layer.

9. The lateral pressure gradient term in Eqn. (1) is neglected.

Even with this formidable package of approximations and auxiliary rela-

tios, the method of Alber and Coates is valid only for adiabatic flow and

is yet to be extended to heat transfer conditions. Similarly, other

integral methods grow to substantial size when compressibility, heat

transfer, and pressure gradient have all been accounted for. The

computer program of NcNally (47) for the method of Sasman and Cresei (61)

contains over one thousand lines of FORTRAN instructions. This is

the same order of complexity as the FD methods, although in fact the

integral methods were intended to be an order of magnitude simpler

thou finite difference computations. In the present state of integral

methods, then, the working relations are too complicated to allow for

hand computation, and the -ared program offered to the user are

too ce.p-Vlicatel for trouble shooting. The user is left even more

impotent by the FD methods, which must be accepted at their face values

the product of years of work by their authors. Two years ago, the pre-

sent writers obtained a FORIdU dock (800 cards) of ',e of the better

7



finite difference methods. The program runs beautifully with the

sample data included in the instructions, but numerical overflow always

occurs when the writers' new data is inserted. No doubt the writers

are at fault, but unresolved human failings are often the result when

large computer listings are borrowed and put to new use.

It is the purpose of this report to present an alternate inte-

gral method which is quite frankly meant to compete with the Karman

integral approach. This may well be an impossible task. The Kar-

man integral relation is an absolute monarch at the present time. Some

idea of its pervasiveness throughout the field of boundary layer

phenomena can be had by studying the recent data of Brott at al (9)

for a favorable pressure gradient at about 1 a 4. After analysingC

all of their data, these authors suggest the following empirical formula

for calculating the skin friction coefficient Cf in a sapersonic flow

with favorable pressure gradienti

C a(0) Rb(P) where -and U* (4)
fT dx RU a a

Sere a and b are curve-fit functions of the pressure gradient parmeter B,

which is a variation of Clauser's (17) original parter that was

based upon 6 insteai of 0. Now this formala is dimensionally

impeccable and agrees vll with Brott's measured skin friction, but

is totally frustrating to the present writers and has little sote

than nuisance value. The reason iS that both of the choesen paratpe

Brott'r data will be compared in this report with the present method.

8

p



are proportional to the local momentum thickness O(x), which is un-

known apriori. If one knew 9(x), it would appear that one has actually

solved the problem, so that Eqn. (4) would not even be needed. This

dilemma vanishes if one adopts an orthodox stance, in which case he

is expected to compute G(x) from Eqn. (1) and its auxiliary relations.

Thus Eqn. (4), which is accurate and concise and tempts one to file

it away for immediate use, actually has no intrinsic value: it is

merely another auxiliary relation for the Karman integral equation.

in the present view, it is a frustrating and ever recurring pattern

of correlating Cf(x) with an integral thickness such as 9(x) and hence

replacing one unknown by another. The method to be presented here

attacks Cf(x) directly and ignores integral thicknesses and shape

factors, which can be calculated later by algebraic formulas if one

so desires.

The new method will be shown to be reasonably accurate when com-

pared with data. Indeed, it may be the most accurate overall of any

method yet proposed for the compxessible turbulent boundary layer.

It -=2=: ua n o " of t Gqdatloiw oz Wtion pLuS a singie extra

relation needed for closure: the law-of-the-wall. The law-of-the-wake

in its standard form is not used explicitly but is implied to the

extent that deviations from the logarithmic law-of -the-wall may be

called a "wake". Apparently the first serious attempt to develop,

this new idea was a pper by Drand and Person (7) in 1964, concorning

incampreible flew at very modest pressure gradients. Later work for

stran pressure gradients was reported by White (74)0 The present re-

port is the first atteoft to extend the method to turbulent compressible

flow.

'!



IX. DEVELOPMENT OF THE NEW METHOD

The present analysis is restricted to steady two-dimensional flow

of a perfect gas in a compressible turbulent boundary layer. These

restrictions are not critical, and the success of the method in

arbitrary applications will govern whether further generalization is

warranted. Thus we are concerned with the following four basic re-

lations for the turbulent boundary layer mean flow:

a) The continuity equation:

3 .)+ i~-(ov) 0 (5)

b) The ~mmntm equationt

3 u I U d
0 u ij + 0 v +(6

c).The ensrgy equationt

0U + 0 v u -Tu? 7

d) The perfect gas law

o oR? T or: TI?,,. oo

Hereb h /u2 is the stapatioa entbalpy, ad the syMbols q and T

01



Note that these equations neglect the lateral pressure gradient dis-

cussed earlier. Although the lateral gradient strongly influences

the momentum thickness, as mentioned, it appears to have a negligible

effect on the wall shear stress approach used here. Equations (5)

through (9) were apparently first assembled by Young (78) and are

now standard to cupresaible turbulent flow analyses. There are

six unknowns ( p,uv,h ,q, i) and only four equations (5-8), so

that further relatios are needed. The standard point of depaiture

for an FD method is to correlate the variables q and T with local

conditions into two additional expressions for eddy viscosity and eddy

conductivity. The standard MN method approach is to combine Eqns. (5)

and (6) and integrate with respect to y across the entire boundary

layer, thus obtaining Eqn. (1), the Karman integral relation. Addi-

tional relations for r1 methods are then brought in as correlations

between integral parameters.

The present method chooses two- and only two- additional relations

e) The compressible law-of-the-vall:

+ prossure heatu - u/v * -fn( yv/Vw gradient flux copressbility) (10).

where V3(T) is the friction velocity related to wall density. The
0 w

exact form of Eqn. (10) will follow later.

f) Croccoos asmption for the energy equation - cf. Schltchting (62)t

2Prandtl nmber •unityt T I' a + bu + c • (11)

The Crocco assumption, which appears to be quite reasonable for arbitrary

11



compressible turbulent flows - see, for example, Lee et al (42) -

can be combined with Eqn.(8) to express the density distribution

o(x,y) in terms of u(x,y), hencP uncoupling the energy and momentum

equations. This means that a single differential equation for local

wall friction can be derived with the new approach and uncoupled

from the local Stanton number. The constants (a,b,c) in Eqn.(11)

can be related to wall conditions as follows. First, at the wall,

u = 0, which is the no-slip condition. Hence a = T . Second, thew

temperature gradient at the wall must reflect the wall heat flux.

Hence b = qWWAwTw. Finally, if b = 0 (adiabatic wall), the wall

temperature must equal the adiabatic value T = T + 2 /2c , where
aw e e p

we have assumed constant c as an accurate approximation for air. Thep

quantity r is the recovery factor, r 0.89 for turbulent flow. Hence

the constant c = (-r/2c p). Also, it is desirable to use the wall
+

variable u = u/v* in the final form of the Crocco relation. With

the above considerations, Ean.(ll) can now be written as

=+ 2

T/T w  0/a & 1 + 8 u - y U+ 2  (12)

where B qw w and rv* 2
Twkw0wV* 2c Twwv pw

The new parameters, B and y , are in ideal law-of-the-wall form to

suit our present needs. We shall term 8 the "heat transfer" parameter

and y the "compressibility" parameter. To this we add the "pressure

gradient" parameter a already used earlier in the incompressible

analysis of White (74):

12



U (13)= V dx

This is a very convenient parameter, being directly related to shear

stress without integral thicknesses, and was suggested by the work

of Mellor (48).

Then the fundamental assumption of this paper is that the velocity

profiles are correlated by the law-of-the-wall in terms of the local

skin friction and the parameters for pressure gradient, heat transfer,

and compressibility just discussed:

+ +
u(x,y)/v*(x) = u = fcn( y op y) (14)

where y yv*IV .

The actual functional relationship is a minor detail and will be developed

in the next section. Equations (12) and (14) provide the necessary

closure for the turbulent boundary layer relations, Eqns. (5-8). No

further relations are needed, and we will now derive a single ordinary

differential equation for computing the wall skin friction C (x) in an
f

arbitrary compressible turbulent boundary layer.

We should note that Eqn. (14) is only an approximation. It is

believed to be accurate under all but the most strenuous conditions

such as a sudden change in pressure gradient or a discontinuity in wall

temperature. Other integral methods are also remiss in this respect,

13



with FD methods somewhat better in their ability to respond to sudden

local changes. It is interesting that the Karman methods begin with

an exact integral relation, Eqn. (1), and then introduce approximations,

whereas the present method begins with two approximations, Eqns. (12, 14),

and then proceeds exactly from then on.

Let us now combine Eqns. (5-8, 12, 14). Equation (5) is satisfied

identically by the compressible stream function defined such that

-0 = p u ; - P v (15)

Note that * has dimensions of viscosity. Equation (15) implies that
+

the dimensionless stream function may be correlated exactly 
like u +

+

/w- fcn( y , , y) (16)

+

The independent variables are now changed from (x,y) to (x,y ). By

combining Eqns. (14) and (15) with the momentum relation, Eqn. (6),

we obtain:

PV*U u3_ +) ' v ay(v*u+) + - ., (17)

avu x vw ay+ dx v IV+

144



+
The differentiation with respect to y is left untouched, but the

x-derivatives are carried out using the chain rule:

) - )y +  ++ 1 I + 2X (18)

5 x Tx- Ty + 5- i+t I I

The density variation p(x,y) in Eqn.(17) is related to u+  through

the Crocco relation, Eqn. (12), and the pressure gradient is related to

the freestream conditions from the Bernoulli inviscid relation:

P _ - 0e U e (19)
dx Pe edx

By introducing Eqns. (18) and (19) and the definitions of ('A , , y )

into Eqn.(17), we obtain:

0V* dv* -2 u+  u++ + +-. I + +

dx Vu +  - F u ryy1 1u

2do +)u +  1 . u+ due + v* IT2+ 0 V* a- (U 7- -- 0 -- +-U77+(0

Finally, introduce the density from Eqn. (12) and, following White (74),

perform the critical steps integrate the entire Eqn.(20) from y - 0

T A T ) to y 6 -0) . The result is the following ordinary
w

differential equation for the friction velocity:

15



V* G + pw v 2 d H =Ud Ue + v*TW (21)dx adx - e  11w

where 6+ is the value of y at (y=. The functions G and H are

short notation for rather lengthy (but straightforward) integrals

+

involving u +and the law-of-the-wall parameters:

Pf (U+2 _ + ++ u + dyG = u+ - O+u  + 2y u+1- +_L)11u- _Y ._ y
0 O22)

6+ + +=$ p (+)U 1 ' tIu d+
o.H (u (23)

These expressions will be evaluated numerically in the next section.

After considerable inspection, it may be verifted that "qn. (21)

contains only a single unknown: the wall shear velocity v*. The

remaining quantities such as G, H, etc., can be directly correlated,

through our assumed law-of-the-wall relation, Eqn. (14), to v* and the

known freestream and wall temerature conditions. Thus Eqn. (21)

is self-sufficientt a first order, nonlinear, ordinary differential

equation in v* (x), which needs only the single initial condition v*

v* at .x - x . It is convenient to non-dimensionalie everything. Let00

L and U be a reference length and velocity, respectively, and define
0

the following dimensionless variables:
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j*= V =UAI V(x*) ; ~ (2 /C f (24)

L 6 0

Then Eqn. (21) may be rewritten in the following form:

(G - 3 a K) dA + V1 ( 2+ 4 H=/) PLv (25)

A(A 8 - ) - 111L'

where the primes signify diff-erentiation with respect to x*. Equation

(25) is the central result of tI'is report. it is valid as an approximate

means of solving for the skin friction distribution A (x*) for any

arbitrary freestream Mach number, and v&ll temperattre distribution.

The proper boundary c ndition is a single known value A - A at x*
0

*. The only other relatonp needed are 1) suitable formulas for

the quantities G, H, and 8as functions of ( a aB1yaA) i and 2) known

variations with x* of the freestrem velocity Ue and the vall temperature

ratio % /T,, The effective Reynolds nmber RL is defined &as

17



The viscosity ratio in Eqn. (26) can be evaluated in terms of (Te/T

through any convenient formula (Sutherland law, etc.). For our

purposes, the simple power-law expression is quite accurate:

te tw (Te/AW n (27)

and, in the computations which follow, the value of n = 0.67 for air

was used.*

For use in Eqn. (25), the pressure gradient parameter a may be

written in terms of the new variables as follows:

3
a L (l/V)' , (28)

and formulas for G and H will be computed from Eqns. (22) and (23).

The final thread in the fabric is the evaluation of the thickness

function 6 + , which happens to cause the only algebraic difficulty in

the entire analysis. It is computed by evaluating Eqn. (14) at y " 6:

*e * (T f ( , 0, Y) (29)

Ue0

The comonly used value n 0.76 is actually not very accurate for air.

18



Hence 6+is implicitly a function of A and known functions of x*.

The authors have not been able to invert Eqr. (29) explicitly for

6+ and thus have had to settle for an iterative procedure of com-

puting 6 when A is known. For the computer program listed in the

appendix, this iteration is no trouble whatever, but obviously it would

create tedium in a hand computation. Eqn. (25) is entirely amenable

to hand computation or even graphical analysis (since it is only first

order), but in such cases a set of charts, detailing the velocity re-

lationship defined by Eqn. (29), would be handy for computing 6.

one remark in in order: the basic relation, Eqn. (25), has the

unique property among IN methods of providing an explicit flow separation

criterion, which occurs when G - 3 aH. This is so because that event

will result in A approaching infinity and hence Cf approaches zero,

which is the precise definition of "separation". Thus, in the present

method, we need not search for a pseudo warning of separation such as

a particular value of the shape factor H12 or otherwise. This seem

a distinct advantage, since the writers know of no other effective

separation criterion for compressible flow. Finally, we may note that

Lqn. (25) is identical in form to the incompressLble analysis of White (74).

As 0 and y become very smll (negligible heat transfer and copressi-

bility), Sqra. (22) and (23) for G and K become identical to that

*eLl" r analysis.
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III. THE COMPRESSIBLE FLOW LAW-OP-THE-WALL

To complete the analysis and make Eqn. (25) useful, we must develop

a quantitative formula for the law-of-the-wall as defined by Eqn. (14).

The authors tried many approaches, the most promising of which weret

1. the effective velocity concept of van Driest (71);

2. the transformation theory of Coles (19)1

3. the transformation of Baronti and Libby (3)

4. correlation of measured profiles, e.g. Kepler and O'Brien (37)1

5. the eddy viscosity approach of Deissler (23).

The van Driest effective velocity was used in the integral method of

Alber and Coats ( 2 ). Maise and McDonald (45) found that adiabatic

supersonic boundary layer profiles would collapse fairly well (+30%) to

the incoupressible law of the wall u +(y +) if the local velocity u were

replaced by the van Driest (71) generalised velocity u*t

ut *(%/a)sin -1(au/U) *where a rN./(l+zN) (30)

The concept can be extended to flow with heat transfer, also, but the

agreement in much poorer, especially for high Mach amabere.

The various transformation. theories - ae tnmoe (2) for a recent

review are becoi dq less popular because of their algebraic complexity

and because they stand on very weak ground in pressure gradient or heat

transfer conditions. Nevertheless, the approach is viable, and the us -

formations of Coles Ce and of Baronti and Libby (3 have recently bee

20



suggested by Hopkins et al (34) as a means of correlating flat plate

skin friction. However, every cingle computation of a given point

+ +
u (7 ,,y) by transformation theory requires multiple iterations,

and for the present application the idea was finally dropped.

Scheme number four, the correlation of measured velocity profiles,

is an obvious resort for finding, at least roughly, the effect of the

parameters (0,0,Y) on the law-of-the-wall. Kepler and O'Brien (37)

meastred supersonic adverse pressure gradient profiles (positive a and

Y ), while Lee et al (42) measured cold wall heat transfer (positive 0 )

and Brott et al (9) studied supersonic favorable pressure gradients

(negative G , positive Y ). From these we find that the general

trend of effects is as sketche. in Figure 1. The effect of positive

a and positive 0 is to raise the data above the familiar incoopressible

logarit ic law, and negative a and 0 have the opposite uffect. The

parameter Y , being proportional to velocity squared, is always positive

and alvays tends to lower the data an shown. If (B ,OY) are all finite,

the general effect is roughly a auperposition of the various separate

effects. There, is uch a large scatter in meaued suersonic profiles

and skin friction that no quantitative effocts could be correlated.

The final scheme is an eddy viscosity approach, usLng, say, a

miin length approximatin and the Crocoo relation for tmperature.

This approach, which in siVpl, and fairly quantitative and allows

ready evaluation of the integrals in Iqs. (22) and (23), vas adopted

for the present study. It agree with the effects sketched in Figure I

and gives numerical values of the functions G,K and 6CwhiCh seem qute
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+Effect of positive o( (adverse
upressure gradient) and 1 4

positive 0 (cold wall J
heat transfer).

Effect of "t(compressbiity).
negative OC(favorahle pressure
gradient). and negative ~
(hot wall heat transfer).

(~cannot be negative)

Figure 1. SKETCH ILLUSTRATING THE EFFECT OF

VAIOUS PARAMETERS ON THE LAW-oF-THE-WALL

FOR, COMPRESSIBLE TURBULENT F LOW.
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adequate for general use, as shown in the next twvo sections.

The theory chosen was that of Deissler (23), who assumed that

the Prandtl mixing length approximation could be extended to the variable

density case with no further changes. That is, the total shear is re-

lated to an eddy viscosity as followst

+ a
97 (31)

whiere C P pe 2 Y21

and K - 0.4 is von Karman 'a constant. Also, near the wall, the boundary

layer is approximately a Couette flow with negligible convective accelera-

tions, so that the expression

+ -ft * Y or: L l+ y+ (32)

is a good approximation and used in many theories. Finally, the density

in Eqn. (31) is eliminated through the perfect gas relAtion, Eqn. (8).

Equations (31) and (32) my be combined to yield

1+ + + (Ii * 2 1 ju. (33.)

which is quadratic in the velocity derivative. solving, with viscosity

and density replaced by taqierature through XUps. (221 and (27), wot obtaizn:
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u - i + r i + 4 K 
2 y+2 (T/T) 12n (1 + a Y+) 134

2 2 (Tw/Tl+n (34)

This is the desired relation for computing the law-of-the-wall, but,

since the term in brackets [I is typically much greater than unity,

the formula collapses with very good accuracy to the following

approximation:

3u (T/T + (35)

Note that this is equivalent to neglecting the laminar portion of the

total shear in Eqn.(31). The only error occurs in the viscous

sublayer, and the effect on the present method is entirely negligible.

The temperature in Eqn.(35) could be computed from an "eddy

conductivity" assumption and solved simultaneously with Eqn.(35) -

as was done by Deissler (23) - but the present writers found that

quite adequate accuracy could be obtained by simply using the Crocco

approximation, Eqn.(12):

T w  1 + aU - YU+2  (12)
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Equation (35) may then be integrated - using e.g. Subroutine RUNGE in

the appendix - to obtain numerical values of u +(y ,aBry). Closed

forms for the integral can also be found, but the resulting expressions

are cumbersome algebraically. We may note that Eqn. (35) is precisely

the expression used in the finite difference method of Patankar and

Spalding (58) for computing local velocity profiles near the wall.

Some numerical values of the integral of the Eqn. (35) are shown in

Figures 2 and 3. For (eif = (0,0,0), the result is the familiar

logarithmic 1.w:

+ I +
u - In(y+) + 5.5 (36)

For finite a, the variables can be separated in Eqn. (35) and

integrated to give the following:

+ sin + + j 2 (P-Po) InP-)P'l (37)sin-(2y - ) =sin-l(2Yuo ) }(7
SQ K0Po-1

where Q (2+ 4 y) and P = ( + y+) .

since this formula diverges at (y = 0), it is necessary to insert

+ +
initial values (Uo, y+) sufficiently close to the wall for all the

0

curves to converge. From Figures 2 and 3, this appears to happen for
+
y less than about ten. Thus, for utilizing Eqn. (37) in calculations,
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+ +
we will take as initial conditions the point (u = 10, yo= 6), which

falls on the logarithmic curve, Eqn. (36). Note that, if y+ is known
+

u may be computed explicitly from Eqn. (37), but the opposite is not

true, as mentioned earlier. Unfortunately, it is the problem of corn-
+ +

puting y when u is known that confronts us in the present analysis

(for evaluating 6+in Eqn. (25)), hence the need for iteration.

Figure 2 shows the law-of-the-wall profiles for a range of values

of a and Y , while Figure 3 shows the effect of 0 . The trend is

exactly as illustrated in Figure 1. No attempt will be made to improve

upon these curves by, say, including a "wake". As sketched in Figure 4,

Eqn. (37) will simply be assumed to hold all the way to the edge of

the bou.ndary layer whereas the dotted line illustrates the true outer

wake. Thus we make some error in estimating the boundary layer thick-

ness, but the effect on skin friction is entirely negligible, particularly

for a supersonic turbulent boundary layer, which shows almost no wake.

There is also only about a three per cent error in using this apo.i-

mation to calculate the momentum and displacement thickneoses, if one

should care to compute such quantities. Note in passJig that the

arcsines in Eqn. (37) can never have an invalid argument, because of

the physical requirement that (T/Tw ) from Eqn. (12) remain positive.

However, if a is negative (favorable pressure gradient), there is a

mathematical possibility that the quantity (1 + *yj could become nega-
+

tive at large y , thus rendering P imaginary and the formula invalid.

When this happens, though, the velocity gradient is regative, implying

that the velocity inside the boundary layer has become greater than

the freestream value U . To avoid this difficulty, it is recommended
2



Ue

log(y +

Figure 4. COMPARISON OF THE PRESENT NEAR-WALL

THEORY WITH THE ACTUAL LAW-OF- THE -WAKE.
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+I

in negative a cases that y (max) - (-1/ a) and that the boundary+Y

layer thickness 6+ be taken no greater than this value. The pro-

gram in the appendix adopts this idea.

With u+ known from Eqn. (.7), we may use Eqn. (15) to compute the

stream function:

+6

*/uw u + (Tw/V) dy+  (38)

after wh3ch the functions G and H necessary for the theory can be

computed from Eqns. (22) and (23). This time no closejform integrals

were found, and all computations were perfozmed numerically. Further

details of these computations are given in the thesis by Christoph (16).

Some typical values of G and H are shown in Figure 5. Again the ten-

dency is for the curves to be higher if a and 8 are positive and lower

for negative a and 8 and if y in finite. For the limiting case of the

logarithmic profile (0,0,0), the two functions are nicely approximated

by exponential functions which were used in the incompressible analysis

of White (74)t

G(u ,0,0,O) 8.S exp(0.475 u

(39)

H(u ,00,0) & 0.062 exp(0.34 u+)
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A third function of interest, to be called F, is the grouping which

occurs in our basic relation, Eqn.(25):

+ 2

F(u, ,By) ( 2 + -G) (40)

This quantity also has a limiting exponential approximation:

++

F(u 0,0,0) = 47.0 exp(0.475 u+) * 5.53 G(u+,0,0,0) (41)

It was this near-proportionality of F with G that enabled White (74)

to find an exact solution to Eqn.(25) for modest pressure gradient

in incompressible flow. The same fact will also enable us to simplify

our calculations for the present study.

By constructing curve-fit expressions which reduce to the above

limiting formulas for (*,B,y) - (0,0,0), we have adopted the following

approximations which appear to give good accuracy for the practical

ranqe of values of all three parameters:

G(uG ,8 ,8 , 5 exp (0.47S u +f/rl+o.l sgnle) (06+) 1)
e

H(ueG ,8 +Y ) 0.062 exp (0.84 + f/rl+o.12 sgn() 166+061)

(42)

F(Ue, 5,y) 5.53 G

where f ( , * 0.22? ,U)/(l + 0.3 e)
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These approximations are utilized with Eqn. (25) to compute the skin

friction distribution Cf = 2/A 2  The factor f above will play a

prominent role in the flat plate theory of the next section. The

parameter ais conputed from Eqn. (28) and u+ is related to the

variable A from Eqn. (29). For a perfect gas of specific heat ratio

k, the two quantities in the factor f in Eqn. (42) may be written as

follows:

Y ue _ r (k-1 M2 (%T?)
(43)

+ ke' w Mr2) -1 (
I ue - (T/TW) (1+- Te -

Finally, since the correlations in Eqn. (42) contain 6 , Eqn. (37)

aut be iterated for . given value of u to o oute this thickness

parameter. As mentioned earlier, the cmputation of 6 is the only

cmberscme procedure associated with the present method. It is hopeA
+

that future work will enable 6 to be elmin;ed entirely in favor of the

single variable I

This new theory will now be illustrated in the next two sections

for cases of practical interest. The owplete set of basic equations

is listed as a group in the last section of this report.
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IV. COMPRESSIBLE TUJLENJ.e FLOW PASiT A FLAT P~LATE

Needless to say, the flat plate is not the reason for developing the new

theory, even if heat transfer is included. There have been n~.imrnus

theories of compressible turbulent flow over a flat plate, and

twenty-four of these were discusstd in detail in 1963 in a review paper

by Spalding and Chi (66), wh"o developed a least-squares correlation of

their own. Since then, another dozen methods have appeared, napstly Gotr-

cerned with the recent interest in generalized compreRsibii-ty trarl--,

formations. To add on yet another method, Eqn. (25)., is not an ~ii~

prospect. Yet a comparison should be made for completeness; and to this

end the Spalding and Chi (66) data compilation was ':rought up to date.

The Appendix lists data for flat plate flow at 426 adiabatic wall condi-,

tions and 147 heat transfer conditions, st fteestream Mach -wmbers frot

zero to ten. It in apparently the largest liat ever acapiied, of such.

data. The measurements were compared with the~ various theories (see

Table 1) with two very interesting results: 1) [or sif adiabatic wall,

the present method has the smallest mean absolute error of-any kvm.*n

theoryi and 2) fr flow oith heat transfgr, '*n almnst forg~otten method

given in a dissertation by Moore (52) ip th.clear winner -the present

method scoring only a reasonably credit,*ble fourth place# bel.ind spaiding

and Chi (66) and van Driest (72)., of 0ical importance is the curious

fact that, of all tne various flat platet theories, o2Uy the present

method car, be extended without any complication to var,0able frees~ress

and wall temperature conditions. Thus che writers believe that they hav*

pot f'rtl. i 49monstrably accurate tnd qsnarally useful now met.hod11
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For the flat plate, V -1.0 -constant, and Eqn. (25) reduces to:

G dA RL dx* (*44)

If the freestrem Mach number and vail temperature are constant, B and

Y are constant, and G is therefore a function of X only. We may

integrate Eqn. (44) to obtain a relation between local Reynolds nu"rber

and local skin friction:

R - U x/ V. (Tw/T ) n+ f G(A.S,y) dX (45)
x 0 w

fohere- we have assumed fully turbulent flow with the leading edge (x 0)

at the be inning of tho boundazy layer (~-0.The integration could

be, pe r ormd ntumrically, b ut we desirt. an ;ixglic-.t, albeit approximate,

sktfriction foxuuUl. Thus we -adopt -the zarva-fit expression for G

from Eqn.(42 , for (R 0

8.5 exp( 0.475 f )fA r ) / ) (46)

substituting into Eqn. (44) and inteijratinq, we obtain:

0.cSf .(ov l n( 0.OS6f (T/Tw)l+flft (47)
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Solring for Cf = 2/ X2, we obtain the following interesting formula:

Cf 2 0.451 f2 (Te/Tw) (48)
In (0.056 " (Te/r) R )

The factor f is defined in Eqn.(42) and, for a perfect gas, becomes:

( 1 + 0.22 r ('-) M2 T /T+ 2 e e w (49)

( I + 0.3 (T aw /Tw- 1) )

In the limit of incompressible flow with zero heat transfer, f 1.0 and

T = T T a and we obtain:e w aw

0.451

Cf (Incompressible Flat Plate) 4(50)
in (0.056 R )

This formula was obtained by White (74) in his incorpressible analysis.

Now neither Eqn. (48) nor (50) is particularly accurate, being based upon

a curve-fit for G, but, by comparing the two, we may deduce the following

transformation for flat plate flow:

Cf(R e T e /T w f 2 Te  Cf. i (51)
Tw inc
= l1+n

where Reffective f (Te/Tw) Rx
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Thus the flat plate skin friction for compressible flow is directly

related to an incopressible value of Cf evaluated at a different

(usually smaller) Reynolds number. This is the same concept achieved

by previous theories of the flat plate in turbulent flow. In the notation

of Spalding and Chi (66), Cf should be related to Cf by the relation:

inc

1 i R F

F f R x) Cf (RFR) (52)
Cf FCf inc x RxFcf inc 9 B

depending upon whether the appropriate known Reynolds number is R orrX

R The uniqueness of this transformation is satisfied only if

F = F F (53)
Re R xc

From Eqn. (52), we see that the present theory predicts that

Fc  w f 2  ; F = f (Te/T) 1 n F (T/T) f- (54)
= Te FR ewF Re e w

with f given by Eqn.(49). There are many other theories, and Table 1

summarizes eight methods which are either well known or very accurate or

both. Note the diversity of expressions for F and F . The first

six of these were tested against the 573 data points in the Appendix,. and

the relative deviations e. were calculated according to the formula:
1
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TABLE 1

FLAT PLATE TRANSFORMATION FUNCTIONS

AUTHOR Fc  FR$ NOTATION

Eckert(24) Tn TE= T (1+.039M -.5(1-1/t))
TE/e (TAP) E e e

t = Te /Tw

Moore (52) (l/t-l) .1156Z/L t = TeT wQ-in- (-) ',) 291

Q() Q = .9212 e.0706(l-t)

:wL = 11.5 + 6.6(1-T/Taw

z = tn exp(.4L)

Somner & T ( n TsT (1+.035M 2+.45 (l/t-))
short (65) eSe

Spalding & .2 r M2 t'702 .772 t T e/Tw
chi (66) . e-r 2

(Sin A+sin B) a (.2r M2 t)e
2

b t(l+.2r M - l/t)
e

A= (2a2 -b)/(4a 2+b
2

B= b/(4a2 +b
2

w / aw

van Driest same as ( Tn same as Spalding
#2 (72) Spalding (Te and Chi

and Chi
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TABLE 1 (Continued)

AUTHOR F 1F RGNOTAT ION

Present ~ -1 -2 enf

method e w
2

f=1+.O44rNe t
1+.3(T/T1

Baronti & n(t) (A)n
Libby (3) B w e B w e

(Tf/ (j+(l+.2M e
-j) (S 3) ( Cf.V

2 -
-. 1M (37.45Cf.)

e 2

2.
Tf Te (+l2Me j(06

'~ 2 (1 . )2

(Cfi) -"MeCfi~lG

(ITERATE FOR Tf P Cfi)

Coles (18) j(T/T )n (T /Tjf = T /T

C 430 e +

T/T =j + (1+.2M 2

e e
+

- U+ (.1 M 2Cf.
e 2

Note: u given as a
function of y+ i
reference (18).

ITERATE FOR T C Cfi.
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Error: ei  (Cfe /Cf theo - 1)i  (55)

Both the rms and mean absolute error were computed for the first six

methods in Table 1:

RMS Error = ( j E ei  ; Mean Absolute Error = leil (56)

The final two methods in Table 1 - the transformation theories of Coles(18)

and Baronti and Libby (3)-were not computed. A glance at the Table shows

why. Not only do the compressibility transformations require iteration

to compute the "reference" temperatures (TB ,Tf,Tc), but within this

iteration is another nested iteration for the incompressible skin

friction Cfi. The writers were, frankly, not prepared for such an

undertaking and, frankly, doubt if the average engineer is prepared for

it either. Nevertheless, the two theories continue to be popular.

The data are in the form of skin friction Cf or drag coefficient CD

for various Rx or R . Since FRX and F% are almost always fractions,

the incompressible value Cfi is invariably evaluated in the low

Reynolds number range and it is important to have a good formula for

computing Cfi from Reffective- Otherwise one will add on the error in

the formula to the error in the transformation. Apparently the best

incompressible formulas are those of Spalding and Chi (66), who integrated

the exact law-of-the-wall for zero pressure gradient, including the

ublayer region. This results in implicit formulas for Cf:

40



y41

R 4 1 eyY2-Y6 -2 4 /2_5 2_6 7-L .3072 +e-(Yy-4Y+6)-6-2y-y /12-yS/20-y6/60-Y7/252) (a)

(57)

Re = . + .8 ( (1-2/Y) + 2/Y -y 2/6 -y 3/12 -y 4/40 - Y5/180) (b)
.96 4.8

where Y = 0.4 (2/Cfi)

If the Reynolds number is known, one must iterate these formulas to find

Cfi by taking as a first estimate, say, a simple power-law formula.

Equations (57), although cumbersome, have the best known agreement with

incompressible friction data - see Spalding and Chi (66) - and hence were

used for the theoretical comparison in Table 2.

If we wish to compute the drag CD for a given RL, Equation (57a)

is used to compute Cf(L), which specifies Y(L) and therefore specifies

R,(L) from Eqn.(57b). Then the drag follows from the Karman integral

formula for zero pressure gradient:

CD = 2 Q(L)/L 2 RO(L)/ P . (58)

Again the computation is obviously cumbersome, but the accuracy is

desirable for the theory comparison.

Table 2 shows the comparison of the first theories from Table 1 with

all of the flat plate friction data known to the writers. For an adiabatic

wall, the methods of Spalding and Chi and of van Driest are essentially

identical and, together with the present theory, are the most accurate

theories available. The present theory has a significantly lower mean
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TABLE 2

COMPARISON OF SIX THEORIES WITH FLAT PLATE FRICTION DATA

ADIABATIC: 426 Points COLD WALL: 147 Points

AUTHOR RMS % Error ABS % Error RMS % Error ABS % Error

Eckert (24) 12.44 9.06 24.61 20.28

Moore (52) 8.87 6.54 12.56 10.17

Sommer and
Short (65) 9.40 7.77 19.95 16.45

Spalding & 7.59 5.46 13.23 11.04
Chi (66)

Van Driest 7.55 5.46 14.28 11.73'
42 (72)

Present
Theory, 7.59 5.17 14.80 12.29
Eqn. (54)

1 1Note: RMS Error e ( e ) MEAN ABS Error - i
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absolute error.

For flow with heat transfer (cold wall data), a surprising winner

emerges: a dissertation by Moore (52) which received only limited

distribution and was not included by Spalding and Chi (66) in their

review. The method of Spalding and Chi takes second place over van
.772

Driest by virtue of the term (T /T ) added to FpR. The present
w awThprsn

theory is a close fourth behind that of van Driest. For heat transfer

work, the present theory would be greatly enhanced by dropping the

Crocco assumption, Eqn.(12); its performance is creditable in any case.

Note that the widely used "reference temperature" method of Eckert is

in fact a very poor performer.

It is interesting that the method of Moore (52) has surpassed the

least squares data correlation of Spalding and Chi (66) by simply coming

up with a Letter formula than the one which Spalding and Chi minimized.

Moore used the van Driest effective velocity, Eqn.(30), and added a

factor "L" (see Table 1) to accourt for the variation in viscous sublayer

thickness with wall temperature. Also, Moore introduced a "Q" factor

to modify the momentum analysis of Wilson (75) to account for an adiabatic

recovery factor of r = 0.89, which was the value used in all calculations

for preparation of Table 2. It appears from the writers' study that the

increased effectiveness of Moore's method is chiefly due to the sublayer

correction factor "L".

For the reader's interest, Figure 6 shows the classic (Cf/Cfi) plot

versus Mach number for R = 107 and various wall temperature ratios. Asx

is well known, there is a large effect of wall temperature over the entire

Mach number range. Similarly, Figure 7 shows the effect of xeynolds

number on the adiabatic wall friction factor. We see that this effect

also can be substantial at very high Mach numbers.
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Although they were adopted for the rigorous comparison in Table 2,

the implicit formulas for Cf and CD from Eqns.(57,58) are really too

cumbersome for routine use. Therefore, for general interest, the writers

compared Eqns.(57) and (58) with some of the more popular engineering

formulas for drag and skin friction, cno1uting the per cent deviation

from Eqns.(57) and (58). For evaluating Cf(R ), we may cite the

following formulas and their accuracy over the range R = 10 5-109
x

a) Blasius power-law:

Cf = 0.0592/ R0 "2  + 30%
X

b) Schultz-Grunow:

Cf 0.370/(lOg1 R)
2 .584  + 8%

c) Prandtl-Schlichting.

Cf 1/(2 lo 1 Rx - 0.65) 2 3  + a (59)

d) von Karmlan-

cf 4.15 loq 0 (R1 Co + 1.70 + 7 %

e) Present approximationt Eqn.(50) odified-

2
C0  - 0.42/In (0.056 R ) + 4

rt seems that the present theory gives the most reliable &pproxmatlon

for computing skin friction explicitly.

ror computing Cf from , we have the following formlast
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a) Prandtl-Falkner power law:

1/6
Cf - 0.013/ R+ 6

b) Squire-Young:

Cf =0.0576/ log2o( 4 .os Re) + 7 % (0)10!
c) von arman-Schoenherr:

Cf 1/(17.OS R2+ 25.11R + 6.012) + 3 %

Here the accuracy is much better, even for the crude formulas, because

0 is a much better local variable than x, which suffers from ambiguity

about the location of the "virtual origin" of the boundary layer. Since

* was ignored in the present analysis, no formula of this type arose.

It should be pointed out again that formulas based on % cannot stand

on their own, bcause 9(x) is not a known geometric variable and must

be computed as part of a Karman integral type of analysis.

For coqputing the drag CD from RL , we have the following-

a) Blasius poyer-lawt

C 0.074/L 0 "2  + 2'

b) Prandtl-Schlchtinqt

CO . O.455/(Ilog 1 0k) 2 . 5 8 3-

C) Schultz-.Grunow3

c. " o.427/(r,
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J3

d) Karman-Schoenherr:

C D 4.13 log 10(RL CD) + 2 t

The Karman/Schoenherr and Prandtl/Schlichting formulas are clearly

superior.

To achieve explicit formulas with even better accuracy, the writers

fit the numerical values from Eqns.(57) and (58) to Prandtl/Schlichting

type curves, with the following results:

2.32
a) Cf =0.225/(log 10 R) + 0.5%

b) Cf 0.0253/(log 10R 9) 1.64 + 1.5%

(62)

C) CD 0 .43O/(log "R)21 + 0.8%

1.807d) C D .O385/(log 10 R S(L) + 0.6 %

These new expressions are the most accurate simple and explicit formulas

known to the writers. They are recoimmended for general usage for the

incompressible flat plate and for use with the compressible flow

transformations listed in Ta ble 1. ---

The next section will consider cases where the freestream and wall

conditions are variable.
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V. COMPRESSIBLE FLOW WITH A PRESSURE GRADIENT

The chief use of the present method is in computation of the skin

friction distribution Cf (x) in a turbulent boundary layer with arbitrary

distributions of M (x), T (x), and T (x). Very few existing methodse e w

even apply to such general conditions, and these few are all, to our

knowledge, an order of magnitude more complicated than the present

theory. The present analysis consists only of a single first order

differential equation for the skin friction, Eqn. (25), with the various

coefficients in this equation being computed from Eqns.(26,28,29,42).

Let us rewrite these equations here for summary purposes:

4
dX RL V - V'F/V A AH(1/V)''/RL (63)

dx* G - 3 C H

' A3
where: = (l/V)'/RL ,

- (UoL/v e) (Je/w) (Te/w)

0.475 f A (Te/Tw) ,a " 8. l--+o. 1 ogn(ol),- 6+1

_0.84 f A (Te/Tw)
H & 0.062 exp8+.12sgn ()1) )

-.F 553 G ,

and f £ 1 + 0.llr(k-l)Mi(Te/Tw)
1 + 0.3(Taw-Tw)/Tw

+

Since the above correlations for G and H contain the thickness 6

we must (apologetically) supplement Eqn. (25) with the law-of-the-wall

relation, Eqn. (37), which relates 6+ to the skin friction X = (2/Cf)%.
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P-1

( -T2 w/ ( F + Q sin{n + .[2(P-P) + ln( -4 o ) ]) (64)

where @ - sin l(2YU" 8) , Q = (e+4y)' , and P = (1+ a6+) .

Q

To match at very low Reynolds number with the logarithmic law-of-the-wall,

the initial conditions were taken to be (U +,6 ) = (10.0,6.0). Note that
0 0

A appears only on the left hand side and 6+ appears only in the term P

on the right hand side. However, in general, 8 and y are not known in

advance and must be computed from Eqn. (43) and the local skin friction:

r (1k-)M2/
e

(65)
(Taw/TW) - 1

(Te/Tw)
+

Thus it is definitely necessary to iterate Eqn.(64) to compute 6 (A ).

A FORTRAN-IV program is listed in the Appendix which integrates

Eqn.(63) subject to Eqn.(64,65) when the user specifies 1) an initial

value X- at some position x* - x oL, and 2) known distributions of
0 0 0

M (x), T e (x), and T (x). The program assumes a perfect gas, so that thee 6w

I--~z~'s Cos'1putikd £u Us - Mi (~KIC a and the velocity

ratio is given by V U /U - (M e/M eo)(T e /Teo) The computation of

Y from Eqn. (65) also uses a perfect gas assumption, and the user would

be required to modify these two portions for real gas applications.

Now let us consider some particular cases.
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Flow with a Modest Pressure Gradiente

Suppose that the Mach number (or freestream velocity) variation is

only slight and the wall temperature nearly constant. Then the parameter

will be very small and we may neglect terms involving a and a' in
Eqn. (63). We may also forgo computing + from Eqn. (64), since it appears

only in conjunction with a . Finally, 0 and y from Eqn.(65) would be

roughly constant. Equation (63) reduces to:

dA RL V - 5.53 G V'/V
dx-* G (66)

and G & 8.5 exp(0.475 f A (T)/T

We have replaced F by (5.53 G). Since G is approximately proportional

to e , Eqn.(66) has a closed form solution:

C 0.42 f2 (Te/Tw) (MODEST
f(x*) 2 1+n PRESSURE (67)

in (0.056 f (Te/Tw) R eff) GRADIENT)

where Ref f  M (U0L/V e ) V'2 . 5 7  1 V+3 . 57 dx*
0

Equation (67) is the compressible flow analog of the incompressible

relation of the same form discovered by White (74), Note that it

merely modifies the incompressible relation by the same factors Fc

and FRx defined earlier for the flat plate in Eqn.(54). Thus it is
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proved that, for modest pressure gradients, the flat plate stretching

factors can be applied directly to an incompressible pressure gradient

calculation, in the manner of the Coles (18) and Mager (44) compressibility

transformations. But the idea breaks down entirely if the terms involving

a are not negligible. This would explain why, as discussed by McDonald

in Bertram (5), the simple integral transformation theories such as Fish

and McDonald (26) and Reshotko and Tucker (59) are accurate for modest

pressure gradients but fail when the gradients are strong. The authors

have found no explicit criterion for the validity of Eqn. (67), and its

use in practical cases is probably very limited.

Flow with a Strong Adverse Pressure Gradient:

If the pressure gradient is strong, we are required to attack Eqn.(63)

directly with, say, the computer program in the Appendix. To assess its

accuracy, it is desirable to have skin friction data in a strong adverse

gradient. The writers have found only one suitable experiment: the flow

past a waisted body of revolution studied by winter, Smith, and Rotta (77).

Although the flow was axisymmetric, the boundary layer for x greater

than 24 inches was approximately two-d.mensional, and we will not consider

axisymmetric effects here. There are other experiments - e.g. McLafferty

and Barber (46a) - which have been compared with other theories. In

Bertram (5), McDonald considers three such experiments, all of which

measure only momentum thickness and shape factor, not skin friction. This

is almost unbelievable, until we reflect again that presently both theory

and experiment are locked in the grip of the Karman integral relation.

The only possible reason a designer would want to know 9 or H12 is that
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their product, the displacement thickness, is at least nominally useful,

to the extent that it correlates such peripheral phenomena as leading

edge shock wave interactions (which are not likely to be turbulent flow)

and local wall pressure fluctuations (which correlate equally well with

+
the parameter 6 computed in this analysis by Eqn.(64)). Nor is the

typical designer liable to pay any more than lip service to the idea of

adding the displacement thickness 6*(x) to the body shape for improved

aerodynamic computations. Rather, the writers believe that the only

parameter of primary design importance is the skin friction Cf (x), and

it seems incredible that an experiment could neglect this all important

measurement.

We consider now the data of Winter, Smith, and Rotta (77). The

freestream distributions Me (x),for six different test section Mach

numbers (labelled M ) are shown in Figure 8. Since the leading edge

was a thin cone and not well approximated by the two-dimensional equations,

we begin the computation at x = 24 inches, where an adverse pressure

gradient begins and later levels out to nearly constant velocity at about

x - 45 inches. The walls of the model were essentially adiabatic. The

curve-fit velocity distribution for the present theory was chosen to be

of the form

3-dx -ex
Ue(X) a + (b + cx) e xe (68)e

where (a,b,c,d,e) were fitted constants. Equation (63) was then solved

The lack of friction data is particularly annoying in view of the fact

that the "measurement" of 0 and H12 actually involves a complete
survey and integration of both the velocity and temperature profiles
across the entire boundary layer at each station.
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for Cf (x) on the IBM 360/50 digital computer at the University of Rhode

Island. The initial condition was taken to be the measured skin friction

at x = 24 inches. A complete run for a given M W on the computer took

about ten seconds, the limitation being time required for print-out.

The comparison between theory and experiment is shown in Figures 9 an-

10. Also shown are the finite difference computations of Herring and

Mellor (30). The present theory is seen to be in good agreement and in

fact is superior in every case to the much more complex analysis of

Herring and Mellor (30). Like most other methods, Herring and Mellor

key their initial condition to the measured momentum thickness and shape

factor and use these two to compute the initial skin friction, which

happened to fall much too high at the larger Mach numbers. The same

difficulty was reported in the integral method of Alber and Coats (2) and

in the review paper by McDonald in Bertram (5). The present theory, of

course, keys directly to the skin friction - a decided advantage over

Karman-oriented methods. In no case did the present theory predict

separation, although the highest Mach nunber run (M- 2.8) hinted of a

near-separation condition with an initial decrease in the denominator

(C - 3 a H) of Eqn.(63). The agreemenlt of the present theory in the

relaxation son* at the trailing edge is surprisingly good, considering

that relaxation is the chief area of inaccuracy in the related incorpressible

analysis of White (74). Perhaps ralaxation in not as serious a problem

for a law-of-the-wall approximaton in supersonic boundary layers.
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I

Flow with a Strong Favorable Pressure Gradient:

Skin friction data in a supersonic favorable gradient were recently

reported by Brott et al (9). Using a flexible nozzle, these workers

generated a freestream which increased from M 3 to about M = 4.6
e e

in a distance of sixty inches. The measured freestream Mach ntmbers are

1/3
shown in Figure 11-a. They roughly approximate a power-law Me = 1.01 xa

which was used as a curve-fit in the present theory, Eqn. (63), to compute

Cf(x), beginning at x 44 inches. The data was taken for a range of values

of the tunnel stagnation pressure, which effectively corresponds to a family

of values of the nominal Reynolds number RL because cf the variation in

freestream density. Figure 11-b compares the"'theoretical and experimental

(wall shear balance) measurements of skin friction for four stagnation

pressures. Also shown is a flatplate computation for p = 150 psia,

which illustrates the usual fact that favorable gradient friction lies

above the equivalent flat plate values. The wall temperature was slightly

cold, T = 0.82 Tw and the theory was run for this condition. The
w a

agreement of the theory-is good except that it falls somewhat low at the

trailing edge. Friction data by Lee et al (42) at zero pressure gradient

in the same wind tunnel also rise somewhat higher downstream than a flat

plate calculation. The reason for this slight discrepancy is not known

to the writers.

An interesting approximation for strong favorable gradients at large

Reynolds was found from an inspection of the computer results. If the

gradient is truly strong (large negative a), the terms involving H are

I

dominant in Eqn. (63), which simplifies to:
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4
dl 4 1 (1/V) (/V) (69)

3(/V)'

This equation integrates exactly into the following simple approximation:

L (10, FAVORABLE (70)
GRADIENT)

In this simple theory, the skin friction depends only upon the distribution

of (U /Ue)' and is unaffected by the level of Mach number, Reynolds
o e

number, or wall temperature. Equation (70) is also shown in rigure 11-b,

and the agreement is seen to be best at high Reynolds nuibers.

Some Idealized Sample Calculations:

The experiments discussed above d~d net iidicate flow separation or

even suggest trends for theoretical cc.q7cison. It was decided to complete

this section by developing a fe.: idealized cases for which the solution

of the present theory, Eqn. (63), could predict the effect of certain flow

parameters on adverse pressure gradients. The cape selected was an

adiabatic wall with an exponential freestream Mach number distribution:,

M M -4, (71)-
0

and computer runs were made for various values Qf MO, K, and ;he Reynolds

number RL (which can be interpreted from Eqn.(26) as either actual Reynolds
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number change or as a change in the effective wall temperature ratio. The

results of these idealized computations are shown in Figures 12, 13, and

14, showing the effect of K, Mo , and RL respectively.

Figure 12 shows that, for a given Mach number and Reynolds number,

an increase in the adverse gradient (K) will eventually cause flow

separation (Cf = 0). Computations at other values of M and R confirm

this effect. It appears that a suitably relentless adverse gradient will

ultimately drive any turbulent boundary layer to separation.

Figure 13 shows the effect of Mach number level on these idealized

flows. An increase in Mach number naturally tends to drive the skin

friction to lower values, just as in the flat plate case, but no tendency

toward separation is noted until M- reaches hypersonic values of the0

order of -ten. This effect is partly computational in nature, because the

present theory predicts the onset of separation at a finite value of the

order of 0.0001, which is more likely to happen for M = 10. We may
0

speculate, however, that, for given gradient, an increase in Mach number

appears to increase the tendency toward flow separation.

Finally, Figure 14 shows the effect of Reynolds number for a given

Mach number and gradient. No flow separation is indicated at any level

of RL. If anything, the "tendency" toward flow separation is stronger

at the low Reynolds numbers. This was also the case in the incompressible

flow analysis of White (74).

It is hoped that more skin friction data under variable Mach number

and wall temperature conditions will be forthcoming from workers in the

field of compressible turbulent boundary layers.
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VI. CONCLUSIONS

It is the purpose of this report to develop an entirely new

approach to the calculation of skin friction in compressible, two-

dimensional turbulent boundary layers with arbitrary pressure gradients

and arbitrary heat transfer. The analysis uses the familiar law-of-the-

wall, u+(y+), which is generalized in Section III to include the effect

of local pressure gradient, heat transfer, and compressibility. The

final expression for the chosen form of the law-of-the-wall is given by

Eqn. (37). By utilizing this expression as an "equation of state" of

turbulence, the momentum and continuity equations can be integrated

across the boundary in law-of-the-wall coordinates. The result is a

single differential equation with the skin friction C (x) as the only
f

variable, Eqn. (63). This is in sharp contrast to the well known Karman

integral approach, which, by integrating in physical rather than wall-

related coordinates, introduces not only skin friction but also other

(unwanted) variables such as integral thicknesses and shape factors.

The present theory is much simpler than any Karman-type theory and is

frankly meant to compete with or eventually replace the Karman approach.

A computer program for the new theory is given in the Appendix, but

the computations are simple enough to be performed by hand.

Some of the highlights of the new theory are as followst

1. It is valid (but approximate) for arbitrary freestream and

wall temperature distributions.

2. The skin friction is the only variable, and the momentum

thickness, the displacement thickness, the shape factor, etc. are not

required. Nor is any skin friction correlation or compressibility
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transformation required.

3. The analysis contains an explicit separation criterion.

4. For flat plate flow, the analysis leads to a simple algebraic

expression for skin friction which, for adiabatic walls, has the smallest

mean absolute error of any know flat plate theory. For a flat plate

with cold walls, the present theory takes a creditable fourth place

behind the theories of Moore (52), Spalding and Chi (66), and Van

Driest (72). For heat transfer, then, the chief drawback of the present

theory is the lack of an adequate temperature law-of-the-wall.

5. For compressible flow with very modest pressure gradients,

the present theory leads to a closed form solution for C f(x) which

gives insight into why some other well known theories are accurate for

mild pressure gradients but fail when gradients are strong.

6. For compressible flow with strong pressure gradients, the new

theory, Eqn. (63), apparently gives the best agreement with experiment

of any known compressible turbulent boundary layer theory. However,

there are so few data that to term the new theory "most accurate" is

obviously a premature move.

Overall, it is felt that the new theory is definitely useful from

the point of view of 1) simplicityl 2) accuracyl and 3) insight into

the behavior of turbulent skin friction in high speed flows. It is

also felt that this new approach am be readily exteided to include

more accurate heat transfer coqmtations and other geometriess.
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APPENDIX I.

A FORTRAN PROGRAM FOR SOLVING EQUATION (63)

C FRANK M. WHITE - GEORGE H. CHRISTOPH - UNIVERSITY OF RHODE ISIAI1D
C THIS PROGRAM SOLVES EQUATION (63) WITH A RUNGE-TJTTA SUBROUTINE.

REAL M, N, MZ
DIMENSION Y(30), Z(30)

ASIN(X) = ATAN(X/SQRT(1.-X*X))
C READ IN VALUES OF UZERO, MZERO, TZERO, AND CURVE-FIT CONSTANTS.

6 READ(5,1) UZ, MZ, TZ, A, B, C, D
1 FORMAT(7F10.2)

L =0
C READ IN RL, XZERO, XMAX, DELTA-X, MU EXPONENT, DELTAPLUS, LAMBDA-ZERO.

READ(5,1) R, X, XNAX, DX, N, DEL, Y(1)
WRITE(6,61) MZ, Y(1)

61 FORMAT('1 THIS RUN IS FOR MZERO - ',F9.3,9X,'AND LAMBDA -',F9.2/)
C TEST AND ENTER SUBROUTINE IF XMAX HAS NOT BEEN EXCEEDED.

47 IF(X-XMAX) 2, 16, 16
2 CALL RUNGE(1,Y,Z,X,DX,L,K)

GO TO (10,20), K
C NOW COMPUTE THE VELOCITY V AND ITS TWO DERIVATIVES FROM CURVE-FITS.

10 V - A + B*X + C*X*X
VP - B + 2.*C*X
VPP - 2.*C

C COMPUTE THE TEMPERATURE OF WALL AND FEESTREAN FROM CURVE-FITS.
TE = B + C*X + D*X**3
TW " A + B*X*X

C COMPUTE THE FIRST AND SECOND DERIVATIVES OF (I/V).
UP - -VP/V
UPP - (-VPP + 2.*VP*VP/V)/V/V

C COMPUTE MACH NUMBER, ALPHA, BETA, GAMHA, AND UPLUS-E.
M MZ*V SQRT(TZ/l)
RL - R*(TErw)**(.S+N)
ALF , Y(1)**3*UP/RL + .0000001
BETA - ((TEitW)*(1.+.178*N*N) - 1.)/SQRT(TK/1l)
GAM4A - .178**M/(1)**2
UPLUS - Y()'*SQRT(TEW)

C NOW USE THE LAW-OF-TM-EALL, EQN(37), TO COMI' DELTAPLUS BY ITERATION.
PS SQR'(1., + 6.ALF)
PR (Ps -1.)/(PZ + 1.)
Q SQR'(BWTA*BBTA + 4.*GAM*A)
SZ " ASIN((20.*GAIA - UTA)/,)
IF(UPLUS - (Q+EB3)/2./GAHA) 41, 42, 42

42 S " 1.570796
GO TO 43

41 S w A8IN((2.*GAMHA*UPLU8 - BTA)# )
43 8 a .4'(S-z)/9QIT(GAA)

IP(ASS(ALF)-.00001) 40, 40, 81
40 DIEL 6.EXP(S)

GO TO 4
81 P - SQRr(ADS(1. + DEL*ALF))
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FORTRAN PROGRAM FOR EQUATION (63) -Continued .....

Do 80 I = 1,5
T = PR*EXP(S-2.*(P-Pz))
P -P - ((P-1)/(P+1)..T)/(2./(P+1)**2+2.*T)
IF(p) 26, 26, 80

80 CONTINUE
DEL - (P*P..1)/ALF
IF(ALF*DEL + 1) 26, 4, 4

26 DEL - -I/ALF
4 AD = ALF*DEL + .0000000001

C NOWI COMPUTE THE FUNCTIONS G, F, AND H FOR EQN. (63).
FAC = (1.+.22*GAMA*UPLUS**2)/(1.+.3*BETA*UPLUS)
G -8.5*EXP(.475*FAC*UPLUS/(1.+.1*AD/AB(AD)**.5))
H - .062*EXP(.84*FAC*TJPLUS/(1.+.12*ADABS(AD)**.4))
F - 5.53*0

C FINALLY, COMPUTE THE DERIVATIVE OF LAMBDA FMM EQN. (63).
GNET - G - 3.*ALF*H
z(1) -(RL*v - Vp*FA, + Y(1)**4*H*UPP/RL)/GNET

C RETURN TO THE SUBRDUTINE UNLESS GNET HAS BECOME NEGATIVE (SEPARATION).
IF(GNET) 606, 606, 2

C THE SECOND SUBROUTINE BRANCH POINT (20) PRINTS OUT THE AN1SWERS.
20 CF - 2./Y(l) t *2 ,,

WRITE(6,361 X, DEL,CVGB
36 FOMAT(I X-1,F9.3,1 DL',F9.l' CF',F9.6,1 V-1F9.S,' =-',F,9.0)

Go To 47
16 WRTE(6,86)
86 FORMAT( ' NO SEPARATION DURING THIS RUN.')

Go To 6
606 WRITE(6,96) X
96 tORMAT('O SEPARATION HAS OCCURRED AT X 0 ,F10.5)

Go TO 6
END

NOT~s This proqr" should be comoined vitJ* tho. Subtwtiz*miR

which is printed a-A discussed -on thR, next. two pages.



APPENDIX II.

RUNGE-KUTnA SUBROTINE

For convenience to the reader, a description of the arguments

of the Runge Kutta subroutine and the subroutine itself are given

below.

CALL RUNGE ( N, Y, F, X, H, M, K)

N - is the number of differential equations to be solved (set by

the programer)

Y - is an array of "NO dependent variables (initial values set by

the programmer)

F - is an array of size "NO of the derivatives of the variables "Y"

(expression for each F(I) mst be given by the prograumer)

X - is the independent variable (iritiaLzed by the programer)

H - is the desired increment in X (vien by the programmer)

N - is an index used in the SUYDON3 which must be st equal to

ero by the progremer before the first CALL

K - is an integer calculated by the 8UMMVJDNS which to used in a

c mzd GO TO statement in the ain pregrem. For example, the

progremer mw use G0 TO (10, 20)# K where statement 10 calculates

the derivatLve r (1) and statement 20 print* tf, anmmer X and Y(z),
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DIENIO YC(1,4 0,,), M(0,Q1'

2 Q(I) = 0.

A =.5

GO TO 9

3 A 1.707107

IF YOU NEED MORE ACCURACkY, USE A =1.7071067911865475-2414

4 X =X + *H*

5 Do 6 I1,

Y(I) Y (I) + A* (FT) *H-Q(I))

6 Q(I) =2.*A*H*F (1) t: (1. 3. *A)*Q(1)

A =.2928932

IF YOU NEED MORE ACCURACY, SET A .292,3932418134524756

GO TO 9

7 Do 8 1 =,l1, P~

8 Y (I) Y (I) + H*F (1 /6. Q(1)/3.

M 0

K 2

GO TO 10

9 K =1

10 RETURN

END
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APPENDIX III.

EXPERIME11TAL D~ATA CF SKIII FRICTION COEFFICIENTSAr VARIOUS

RtEYNOLDS NUIMBERS AND MACH NUMB3ERS

(For Adiabatic Flow)

-6
R x 10 C (exp) (c)

Brinich and Diaconis (8)
3.05 2130 .00206
3.05 2600 .00199
3.05 3030 .00190
3.05 4400 .00174
3.05 7800 .00146
3.05 10300 .00142
3.05 13000 .00129I3.05 15400 .00128

Chajpm~an and Kester (15)
4.0 .00308

ft1 4.*82 .00293
.816.20 .00280
~Si6.68 .00288
.817.42 .00282

.81 7.78 .00279

.81 8120 .00269

.e1 9.00 .00276

.81 9.80 .00268
.~110,690 .0261
.8221.90.: .00263
.8 12.00 .00264

eel 1T,25 -00260
13.0 --,00261

.81Soo0- '00256-

115064 .00250

8117.3 .00251[
.8 1.o .002,50
.8120.7 .00243

A81- - 3 3.00240
ee1 26.9 .00237
.81 U. *8 .00232

2.5 5 1.78 .00.16J
2.5 6.98 .00202
2.5 7.11 .00202

-2.5 9.0 A00195
2.5 93605

2.5 112 00191
2.511.3 .00189
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I
R R x f6  C (exp) Cd (Oxp)

Chapman and Kester (cont.)

2.5 12.4 .001902.5 14.3 .00190
2.5 14.4 .001882.5 16.0 .001822.5 16.0 .001822.5 17.9 .001832-.5 18.0 .001792.5 21.0 .001742.5 24.2 .001702.5 26.4 .001682.5 28.3 .001632.5 31.2 .001673.6 6.25 .00170
3.6 9.46 .001633.6 10.0 .00165
3.6 16.2 .001533.6 17.5 .001543.6 18.3 .00151

Coles (18)

1.966 2980 .00272
1.978 6470 .00218
1.982 8570 .00202
2.540 2190 .00242
2.568 6600 .00181
2.578 10200 .00166
3.690 2120 *00211
3.701 4100 .00162
3.697 7560 .00138
4,512 3470 .00148
4.554 6590 .00122
4.545 4980 .00131
4.504 2900 .00155
4.544 5240 .00126

So (20)

2.5 2565 00250
2.5 2720 .00210
2.5 5655 .00210

Dhawan (22)

,352 1 .00346
.630 1 .00340
.764 1 ,00329

1.24 1 .00296
1.26 1 .00296
1.37 1 .00282
1.44 1 .00279
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14 R R x 10 C (exp) Cd (cxp)

Dhawan (cont.)

1.45 1 .00272

Goddard (27)

0.7 1.89 .00412
0.7 3.80 .00340
0.7 5.71 .00327
0.7 7.21 .00328
3.07 2.54 .00193
3.07 2.79 .00189
3.07 3.41 .00182
3.07 4.30 .00172
3.07 5.30 .00169
3.7 3.68 .00169
3.7 4.40 .00158
3.7 s,05 .00150
4.54 4.23 .00150
4.54 4.42 .00140
4.54 4*45 .00135
4.54 4.55 .00149
4.54 4.90 .00142
454 5.20 .00140
4.54 5.40 .00139
4.54 6.20 .00140
4.54 6.40 .00133
4.54 6.40 .001294.54 7.10 .00140
4.54 7.40 .00130
4.54 7.40 .00123
4.54 7.90 .00127
4.54 8.20 .00130

Rkakinen (28)

.18 .33 .00417

.20 .36 .00409

.26 .48 .00395

.27 .48 000380

.31 .55 .00384

.33 ,s9 .00374

.37 .63 .00366

.46 .76 .00340

.49 082 o00344

.56 .90 .00336

.57 .90 .00337

.65 1.00 .00330

.75 1.03 .00301

.85 1.12 ..00301.97 1.20 000300
1.45 1.04 .00300
1.45 1.04 .00294
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He10-6

eR x cf (exp) Cd (exp)

Hakklnon (cont.)

1.49 1.04 .00300
1.50 1.02 .00291
1.50 1.04 .00302
1.50 1.02 .003021.50 1.03 .00302
1.0 1.03 .00292
1.52 1.02 .00309
1.52 1.02 .00307
1.52 1.01 .00309
1.52 1.01 .00307
1.71 .68 .00324
1.72 .67 .00321
1.73 .66 .00321
1.73 .84 .003131.74 .67 .00323
1.74 .85 .00319
1.75 .67 .00323
1.76 .84 .0031.01.76 .84 .00312

Hopkinsand Keener (33)

2.445 59680 .00126
2.961 55590 .00111

3.443 53740 .00091

2.468 75260 .00127

2.978 68140 .0017

Jackson, Czarmecki and Manta (36)

1.604 80156 .00162
1.592 10845 .00217
2.182 50989 001444
2.179 43716 .001461
2.188 36860 001495
2.187 29198 .001530
2.182 20974 :001614
2.185 ?"132 .001766

,2.146 7556 .001865
1.595 83872 .001620
1.595 72030 .001660
1.590 45061 0001760
1.591 30511 0001860
1.588 17090 .002080
1.593 58977 :0017002.115 9657 .001654
2.172 13799 .001636
2.178 25216 .00150S
2.192 35099 :001449
2.198 44303 001400
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Se R9 R x lo 6  cf (oxp) c% (exp)

Jackson et. al. (conf.)

2.200 52405 .001404
2.202 60112 .0013872.172 14510 .001636

2.159 35508 .001449
2.188 44672 .001400
2.192 52248 .001.404
2.192 59044 .001387
2.163 26336 .00i505
2.161 13586 .001636
2.110 9723 .001654
2,186 37982 .001365
2.194 94481 .001256
2.188 63929 .001289
2.195 85542 .001256
2.192 73696 .001286
2.189 61403 .001289
2.182 49008 .001324
2.142 21061 .001484
2.083 13360 .001544
2.172 60685 ,001369
2.165 40131 .001454
2.138 17131 .001690
2.170 68974 .001271
2.169 45284 .001324
2.115 19159 .001522
2.199 65500 .001289
2.149 21008 .001484
1.587 123836 .001408
1.594 107318 i001430
1.594 91405 .001463
1.587 72236 ,001520
1.575 50908 .001623
1.548 26317 .001821
1.469 15675 .001993
1.599 78918 .001550
1.602 93874 .001530
1.598 67769 .001580
1.593 52482 .001650
1.56 35864 .001770
1.567 16258 .001950
1.555 11703 .002080
1.598 69760 .001530
1.597 60359 1001616
1.579 20816 .001934
1.596 101828 001540
1.596 67108 .001590
1.579 23077 .001860

Eke (40)

S.787 2477 .001316
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1e  RQ x 10 -6
Sxi0 Cf (exp) Cd (exp)

Kiorkeg (cont.)

5.770 2780 .001275
5.792 3429 .001223
5.805 4040 .001179

attng, Chapman, Nyholm ad Thomas (46)

2.95 6.18 .001602.95 8.30 .001552.95 9.01 .001542.95 10.50 .00150
2.95 12.00 .00146•2.95 13.00 .001452.95 14.8 .001422.95 17.2 .00140
2.95 19.9 .001362.95 21.9 .001342.95 24.6 .001332495 26.0 .001302.95 27.5 .001302.95 30.5 .001302.95 34.0 .00126
2.95 35.5 .001292.95 37.5 .001242.95 42.0 .001232.95 54.0 .001202.95 65.0 .001904.2 4.63 .001324.2 5.90 .001304.2 6.64 .001264.2 7.53 .001254:2 8.0 .001204.2 9.12 .00118
4.2 9.8 .001154.2 11.2 .001144.2 12.6 .001104.2 14.0 .001094.2 15.4 .001074.2 17.5 .001054.2 19.5 .001044.2 22.S .001014.2 25.0 .0009954.2 27.5 .00097S4.2 30.2 .0009604.2 34.8 .0009484.2 37.6 .0009284.2 42.0 .0009224.2 48.0 .0009204.2 55.0 .000894.2 61.0 .0008604.2 ".2 .000604.2 75.0 .000I55
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F
-6.• R0  R x 10 C (cxp) (oxp)

Matting et. al. (cont.)

4.2 84.0 .000840
4.2 95.2 .000828
6.7 7.17 .000680
6.7 7.64 .000660
6.7 9.60 .000634
6.? 14.80 .000610
6.7 18.60 .000600
6.7 27.8 .000530
6.7 33.0 .000512
6.7 45.0 .000510
6.7 46.8 .000529
9.9 14.7 .000331
9.9 20.4 .000325

Monaghan and Johnson (51)

2.43 1072 .596 .00295
2.43 1307 .772 .00280
2.43 1451 .824 .00272
2.43 1792 1.187 .00250
2.43 2521 1.93 .00237
2.43 3268 2.36 .00227
2.43 3950 2.93 .00218

Monaghan and Cooke (50)

2.82 886 .490 .00272
2.82 1493 .945 .00243
2.82 1777 1.346 .00219
2.82 2180 1.570 .00203
2.82 2660 1.860 .00196
2.82 2789 2.178 .00193

Moor. and Harknma (53)

2.631 327 .000900
2.843 611 .000953
2.865 376 .000987
2.897 318 .001020
2.787 1120 .000849
2.809 i73 .000874
2.626 512 .00094*
2.669 1410 e000662
2.693 1180 .000891

O'Donell (56)

2.41 1S30 .00240
2.41 2140 .00240
2.41 2200 .00223
2.41 3000 .00236

77



xlo 6  cC (xp) C (Cxp)
df

O'Donell (cont.)

2.41 3600 .00190
2.41 3820 .00200
2.41 4100 .00180
2.41 5360 .001?3
2.41 .9 700360

2.41 93 .00326

2.41 1.42 .003002.41 ,.12 .00292
2.41 2.41 .002912.41 2.90 .002682.41 3.26 .00260

Rubesin, Maydew and Varga (60)

2.S 3.14 .00266
2.5 3.49 .002552.5 3.63 .002552.S 4.13 .00246
2.5 4.13 .00253
2.5 4.73 .002412.5 4.73 .002422.5 5.45 .00241
2.5 6.09 .002312.5 2 • 70 .002472.5 3.21 .002642.S 3.56 .00250
2.5 3.69 ,002512.5 4.20 .002442.5 4.22 .002502.S 4.80 .002412.s 4.83 .00238
2.S 5.48 000239
2.5 6.17 .00229

Shutte (64)

1.724 6062 .002225
1.724 6093 .002225
1.782 11644 .001947
1.726 19833 .001784
2.017 6113 .002060
1.996 11015 .001810
2.000 20090 ,0016352.249 6182 .001985
2.242 0301 .001816
2.236 10711 .001704
2.243 20490 .001623
2.S02 608S .001804
2.S33 9639 .001583
2.541 18811 .0015 0
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R x 10-6  c (exp) Cc (oxp)

Spivak (67.)

2.8 9600 .00187
2.8 9300 .001822.8 10800 .00180
2.8 11700 .001772.8 12000 .001712.8 12300 :001702.8 13400 ,001692.8 13600 .00168
2.8 7.6 .0018?2.8 8.0 .001822.8 8.9 .001802.8 10.0 .001772.8 10.0 .001712.8 10.8 .00170
2.8 12.0 .00169
2.8 12.S .00168

Stalmach (ra8)

1.739 12490 .001955
1.744 12240 .0019951.744 8429 .0021171.739 3589 .0026101.737 3443 .0025592.019 12320 .001885
2.009 7S28 .002095
2.007 2899 .0026302.238 11670 .001767
2.227 6692 .0019942.230 2520 .002575
2.490 11400 .001651
2.483 6*97 .001672
2.502 6072 .001872
2.484 2660 .00144

2.739 11900 .0014922.724 6304 .001902
2.729 304s .00221-
2.949 11400 .00149S2.949 6041 t00170_
2.956 2740 .0021603.161 11310 .001407
3.16 7149 .001S943.389 11270 .001325
3.402 7785 .001452
3.400 276S .00016
3.661 10180 .001243
3.661 36 .0012433. 667 7991 .0012933.672 2096 .0020573.6e4 207S .002057
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%H R x 10 - 6  Cf (exp) C d (exp)

Wilson (75)

1.897 3.1 .0033
1.897 5.8 .0026
1.897 11.1 .00238
1.897 13.8 .00242
1.897 16.6 *00230
2.121 .0-, 93 .00350
2.121 83 .00240
2.121 11.0 .00220
2.121 13.5 .00218
2.003 2.83 .00310
2.003 5.45 .00258
2.003 10.6 .00234
2.003 13.3 .00230
2.003 16.0 o00220
2 .186 8.0 .00240
2.186 10.S .00219
2.186 12.8 .00218
2.186 15.4 .00212
2. 186 0.82 .00390

Saltsm and Fisher (60a)

0.51 21200 31.1 .00224
0.81 51000 4g.9 .00188
0. 60 23500 0.0 .00224
0.90 32100 31.5 .00187
0.90 21)00 22.3 .0020'.
1.26 31300 30.1 .00200
1.53 27000 27.3 .00195
1.36 33600 29.5 .0019
0. 13500 15.1 .00226
0.6. 2200 22.2 .00218
1.72 60300 42.8 .00149
0.81 116100 11.2 .00111
1.64 10600 69.0 .00112
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APPENDIX Iv.

EXPERIMENTAL DATA OF SKIN FRICTION COE'FFICIE.NTS AT VARIOUS

REYNOLDS NUMBERS, MACH NUMBERS AND TEMPERATURE RATIOS

(For Heat Transfer)

m T /T R. R. XO 106 c(exp) '(exp)
0 V 0 0 x

Abbot (34

3.9 1 5 .00239
7.25 1.8 5 .00116
7.25 1.8 7.5 .00104

Hi11 (31)

8.99 7.68 1245 .000790
9.04 7.97 1607 .000891
9.07 8.28 1908 .000851
9.10 8.69 2287 .000800
8.22 7.17 2081 .000924
3.25 7.26 249" .000910
8.27 7.34 285 .000870
8.29 7.37 3202 .000820
8.29 7.41 3451 .000771

Bi11 (32)

8.25 6.12 2200 3.3 .000910
8.27 6.17 2505 3.7 .000640
8.28 6,25 276 4.2 .000796
6.29 6.18 2965 4.) .000734
9:04 6.07 1936 3.1 .000913
9.07 8.30 2276, 3.1r .000870
9.10 6.65 2710 4.30 .000805
10.03 9.76 1300 1.1 .000941
10.04 9.32 1450 2.!. .000761
10.05 8.91 1680 2.6 .0069
10.06 a.99 1700 2.15 .000673

*norand ouie(34)

6.5 2.643 2262 .00157
6.5 31493 2389 .00152
6.5 2.692 4 A S .00122
6.5 3.601 3300 .00125
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/, Te  R ,:10-6  c C% epHRRx io6

Hopkins, Keener and Louie (cont.)

6.5 3.503 5900 .00120
6.5 3.765 3815 .00123
6.5 4.330 2185 .00141
6.5 4.176 3890 .00135
6.5 4.300 8326 .00100
6.5 4.333 6419 .00116

Lee, Yanta and Leonas (42)

4.72 3.67 38100 .000770
4.7i 3.65 34450 .000782
4.71 3.66 31000 .000792
4.71 3.66 27400 .000794
4.70 3.65 23800 .000812
4.70 3.64 19750 .000832
4.695 3.64 15700 .000856
4.66 3.58 11340 .000892
4.59 3.48 6500 .000936
477 2.78 19180 .000928
4.79 2.40 17450 .000976-
4.72 3.69 41750 .000760

Monaohan and Cooke (50)

2.43 2.94 1898 .98 .00300 .00388
2.43 2.94 2278 1.40 .00273 .00326
2.43 2.94 3270 2.10 .00232 .00313
2.43 2.94 3516 2.51 .00200 .00279
2.4'3 2.94 4525 3.20 .00188 .00281
2.43 3.42 2239 1.42 .00248 .00315
2.43 3.42 3003 2.12 .00232 .00280
2,43 3.42 3568 2.71 .00218 .00265
2.43 3.42 4556 3.70 .00209 .00245
2.43 3.42 5581 4.39 .00195 .00255

Hon~aghannd Cooke(51a)

2.82 3.5 2944 1.343 .00221 .00290
2.82 3.5 2464 1.I31 .00206 .0028!
2.82 3.5 3107 2.426 .00198 .0025i
2.82 3.5 3391 2.897 .00196 .00231

Pappas (57)

1.69 1.7 .807 .0036.-
2.69 1.7 1:50 .0032;
1.69 1.7 2.20 .0031f
1.69 1.7 2.89 .0029:
1.69 1.7 3.55 .00280
1.69 1.65 2.74 .0031
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e /Te o  R x x 10 6  cf (exp) cd (exp)

Pappas (cont.)

1.69 1.65 3.80 .00300
1.69 1.65 6.00 .00276
1.69 1.63 1.89 .00336
1.69 1.63 1.92 .00337
1.69 1.63 2.92 .00310
1.69 1.63 3.00 .00316
1.69 1.63 4.01 .00283
1.69 1.63 4.09 .00271
1.69 1.63 5.42 .00279
1.69 1.61 3.62 .00273
1.69 1.61 5.45 .00255
1.69 1.61 7.18 -.00256
1.69 1.61 7.21 .00240
1.69 1.61 898 .00235
2.27 2.18 0.94 .00342
2.27 2.A8 1.95 .00307
2.27 2.18 2.88 .00286
2.27 2.18 3.90 .00270
2.27 2.18 4.80 .00270
2.27 2.19 1.48 .00340
2.27 2,19 2.35 .00290
2.27 2.19 4.30 .00268
2.27 2.19.. 5.50 .00254
2.27 2.12 3.56 .00273
2.27 2.12 4.90 .00250
2.27 2.12 6,40 .00250
2.27 2.12 7.80 .00230

Sommer and Short (65)

2.81 1.03 3.00 .00312
3.82 1.05 4.07 .002505.63 1.29 4.71 .00187

6.90 1.70 4.06 .00138
6.90 1.70 6.09 .00144
-. 0 1.75 6,06 .00126GA
7,0 1.75 9.92 .00132
3.78 1.05 4.94 .00229
3.67 1.05 3.78 .00251

Winkler (76)

5.26 5.52 3880 5.04 .00135 .00154
5.29 5.57 4300 5.94 .00131 .00145
4.98 4.51 1900 2.29 .00134 .00166
5.19 4.74 1782 2.58 .00161 .00133
5.20 4.83 2960 3.81 .00135 .001%5
5.24 5.02 3455 4.88 .00115 .00152
5.24 4.97 3799 5.11 .00106 .00148
5.17 3.89 1055 2.01 .00147 .00133
5.16 3.71 1652 2.57 .00132 .0019;
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m e w / 0 %R x 10- c (exp) C (oxp)

Winkler (cont.)

5.10 3.58 1735 2.73 .00134 .003275.11 3.52 2488 2.27 .00124 .001535.20 3.77 2482 3.27 .00120 .035.12 *3.78 3256 3.57 .00105 .00182.018
5.21. 5.15 2099 2.72 .00147 .00154
S.14 5.50 2936 3.36 .00139 .07
5.20 5.38 3173 4.07 .00143 .0015
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